Transport and fate of bacteria in porous media: Coupled effects of chemical conditions and pore space geometry

نویسندگان

  • Saeed Torkzaban
  • Shiva S. Tazehkand
  • Sharon L. Walker
  • Scott A. Bradford
چکیده

[1] Experimental and theoretical studies were undertaken to explore the coupled effects of chemical conditions and pore space geometry on bacteria transport in porous media. The retention of Escherichia coli D21g was investigated in a series of batch and column experiments with solutions of different ionic strength (IS) and ultrapure quartz sand. Derjaguin–Landau–Verwey–Overbeek (DLVO) calculations and results from batch experiments suggested that bacteria attachment to the sand surface was negligible when the IS was less than or equal to 50 mM. Breakthrough data from column experiments showed significant cell retention and was strongly dependent on the IS. This finding indicates that cell retention was dependent on the depth of the secondary energy minimum which increases with IS. When the IS of the influent bacteria-free solution was decreased to 1 mM, only a small fraction of the retained bacteria was released from the column. The remaining retained bacteria, however, were recovered from the sand, which was excavated from the column and suspended in a cell-free electrolyte having the original IS. These observations suggest that the solution chemistry is not the only parameter controlling bacteria retention in the porous media. Computational simulations of flow around several collector grains revealed the retention mechanism, which is dependent on both the solution chemistry and the pore space geometry. Simulations demonstrate that the pore space geometry creates hydrodynamically disconnected regions. The number of bacterial cells that may be transported to these relatively ‘‘immobile’’ regions will theoretically be dependent on the depth of the secondary energy minimum (i.e., the IS). Once bacteria are trapped in these immobile regions, reduction of the secondary energy minimum does not necessarily release the cells owing to hydrodynamic constraints.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity Analysis of the Effect of Pore Structure and Geometry on Petrophysical and Electrical Properties of Tight Media: Random Network Modeling

Several methodologies published in the literature can be used to construct realistic pore networks for simple rocks, whereas in complex pore geometry formations, as formed in tight reservoirs, such a construction still remains a challenge. A basic understanding of pore structure and topology is essential to overcome the challenges associated with the pore scale modeling of tight porous media. A...

متن کامل

Transport Property Estimation of Non-Uniform Porous Media

In this work a glass micromodel which its grains and pores are non-uniform in size, shape and distribution is considered as porous medium. A two-dimensional random network model of micromodel with non-uniform pores has been constructed. The non-uniformity of porous model is achieved by assigning parametric distribution functions to pores throat and pores length, which was measured using ima...

متن کامل

An Irregular Lattice Pore Network Model Construction Algorithm

Pore network modeling uses a network of pores connected by throats to model the void space of a porous medium and tries to predict its various characteristics during multiphase flow of various fluids. In most cases, a non-realistic regular lattice of pores is used to model the characteristics of a porous medium. Although some methodologies for extracting geologically realistic irregular net...

متن کامل

A New Approach for Constructing Pore Network Model of Two Phase Flow in Porous Media

Development of pore network models for real porous media requires a detailed understanding of physical processes occurring on the microscopic scale and a complete description of porous media morphology. In this study, the microstructure of porous media has been represented by three dimensional networks of interconnected pores and throats which are designed by an object oriented approach. Af...

متن کامل

Multiple Solutions for Slip Effects on Dissipative Magneto-Nanofluid Transport Phenomena in Porous Media: Stability Analysis

In the present paper, a numerical investigation of transport phenomena is considered in electrically-conducting nanofluid flow within a porous bed utilizing Buongiorno’s transport model and Runge-Kutta-Fehlberg fourth-fifth order method. Induced flow by non-isothermal stretching/shrinking sheet along with magnetic field impact, dissipation effect, and slip conditions at the surface are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008